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ABSTRACT OF THE THESIS

Application of Hidden Markov Models in Financial Time Series:

Inspection of the Capital Asset Pricing Model

by

Minxuan Xu

Master of Science in Statistics

University of California, Los Angeles, 2018

Professor Qing Zhou, Chair

In this thesis, we propose two Gaussian hidden Markov models: univariate Gaussian hidden

Markov models with covariate and bivariate Gaussian hidden Markov models. After that

they are applied to stock market returns to inspect the return-beta relationship stated in

the capital asset pricing model (CAPM). The relationship is examined under 3 definitions of

regimes: market regimes, idiosyncratic regimes and co-regimes. Results show that betas are

larger under bullish market regime compared to bearish. Although no consistent patterns

in beta are discovered under different idiosyncratic regimes and co-regimes, for each stock

the betas do seem to vary considerably across regimes. Our model is also able to capture

volatility clustering exhibited in return series.
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CHAPTER 1

Introduction

The stock market involves great uncertainty, and it is always necessary for investors to de-

tect the signals and patterns in order to make wise decisions. Aside from using numerous

technical indicators built from historical data and trading volume, many statistical tech-

niques have been utilized to analyze financial time series and depict a more realistic repre-

sentation of the underlying mechanism, including autoregressive integrated moving average

models (ARIMA), generalized autoregressive conditional heteroscedastic models (GARCH)

and hidden Markov models (HMM).

In this thesis, we propose two Gaussian hidden Markov models and make use of them

to inspect the return-beta relationship stated in the capital asset pricing model (CAPM).

We start by providing a brief overview of HMMs in Chapter 2. After that, a univariate

Gaussian HMM with covariate and a bivariate Gaussian HMM are proposed in Chapter

3. Details about parameter learning and underlying state decoding are presented, followed

by simulation studies to examine the effectiveness of the estimation procedures. Chapter 4

outlines some background knowledge about stock returns. In Chapter 5, we investigate the

CAPM relationship under three definitions of regimes: market regimes, idiosyncratic regimes

and co-regimes. After applying the proposed models on real-world stock data, results are

interpreted to provide some insights. Chapter 6 concludes the thesis and suggests areas that

need future work.
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CHAPTER 2

Overview of Hidden Markov Models

Since its introduction in the 1970s to facilitate speech recognition [BP66], Hidden Markov

Models (HMMs) have been extensively employed in various fields, including shape[BM04] and

handwriting recognition [KHB89][SGH95], bioinformatics [KBM94] and financial modelling

[HN05][BLD01]. This demonstrated power of HMM can be attributed to its flexibility to

integrate two processes into one model.

In this section, we provide a brief overview of discrete-state HMMs. Most of the materials

come from [Rab89]. HMMs with continuous hidden states or continuous time are beyond

the scope of our discussion.

2.1 Basic Definitions

An HMM is formulated based on a stochastic process of non-observable states, with each

state emitting an observable symbol. It is characterized by five key components:

• The sequence of hidden states {Zt}, t ∈ N+, a first-order Markov process.

Assume that there are N possible values for each state, i.e. Zt ∈ {1, 2, . . . , N}. The

memoryless property states that the conditional distribution of future states only de-

pends on the current state, not on the past history,

P (Zt+1|Zt, Zt−1, . . . , Z1) = P (Zt+1|Zt) .

• The sequence of observed symbols {Yt}, t ∈ N+.

Yt could either be a discrete or continuous random variable. In the discrete case,

assume that Yt ∈ {1, 2, . . . ,M}.
2
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• The transition matrix of hidden states A = (aij)N×N , where

aij = P (Zt+1 = j|Zt = i) and
N∑
j=1

aij = 1. (2.1)

• The conditional probability distribution of observed symbols given hidden states

P (Yt|Zt), a.k.a. the emission probabilities. When Yt is discrete, let B = (bj (k))N×M ,

where

bj (k) = P (Yt = k|Zt = j) and
M∑
k=1

bj (k) = 1.

• The initial distribution of hidden states π = (π1, . . . , πN), where

πi = P (Z1 = i) , 1 ≤ i ≤ N. (2.2)

Also note that the state transition probabilities and the emission probabilities do not

vary with time. An example of HMM over the period [1, n] is shown in Figure 2.1. Nodes in

gray represent hidden variables, while nodes in white represent observed symbols. Arrows

illustrate the dependency relationship between variables.

Figure 2.1: Graphical representation of an HMM

Let θ = (A,B) denote the model parameters. The coming sections address two tasks for

an hidden Markov model:

1. The Learning Problem: Given {Yt}, how to get the parameter estimate θ̂ =

arg maxθ P (Y ; θ)?

3
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2. The Decoding Problem: Given {Yt} and θ̂, how to infer the hidden sequence {Zt}?

Details about implementations are skipped in this chapter, and readers can feel free to refer

to [Rab89]. It is in the next chapter that we are going to elaborate on the implementation

of two proposed Gaussian HMMs.

2.2 Learning Model Parameters

Combining the conditional dependencies, the joint probability of the model is

P (Y, Z; θ) = P(Z1)P (Y1|Z1)
n∏
t=2

P (Zt|Zt−1)P (Yt|Zt) .

Since {Zt} is unobserved, the parameter estimate cannot be directly calculated by max-

imizing P (Y ; θ) =
∑

Z P (Y, Z; θ) . Baum-Welch algorithm[BPS70], a variation of the more

general Expectation-Maximization (EM) procedure[DLR77], is employed to deal with this

issue. It iterates between an expectation step (E-step) and a maximization step (M-step).

In the E-step, the conditional expectation of the log-likelihood is computed given ob-

served variables and current parameter estimate, i.e. E
[
logP (Y, Z; θ)

∣∣Y, θ(m)
]
. In the M-

step, parameter estimates are updated by maximizing this conditional expectation. We get

θ(m+1) = arg maxθ E
[
logP (Y, Z; θ)

∣∣Y, θ(m)
]
. It has been shown that each iteration increases

the log-likelihood unless a critical point has been reached. The two steps are repeated until

after l iterations
∣∣θ(l) − θ(l−1)

∣∣ < δ. Here δ is the convergence tolerance. The final output of

the method is then θ̂ = θ(l).

2.3 Decoding Hidden States

With the help of the Viterbi algorithm, one is able to find the hidden state sequence that

is most likely to have generated the observations. The method produces the maximum a

posteriori estimate

Ẑ = arg max
z

P (Z = z|Y ) = arg max
z

P (Y, Z = z) .

4
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For more details, see [Vit67].

2.4 Model Selection

When fitting HMMs, it is possible to increase the likelihood by increasing the number of

states N , but doing so may result in overfitting. Akaike Information Criterion (AIC) [Aka74]

and Bayesian Information Criterion (BIC) [Sch78] provide a trade-off between parsimony and

goodness-of-fit. They are defined as follows:

AIC = −2l
(
θ̂
∣∣∣Y, Ẑ)+ 2d

BIC = −2l
(
θ̂
∣∣∣Y, Ẑ)+ (log n)d

where l
(
θ̂
∣∣∣Y, Ẑ) is the complete data log-likelihood evaluated at the parameter estimate

from Section 2.2 and the inferred hidden sequence from Section 2.3, d is the number of

parameters estimated by the model and n is the total number of observations.

Compared with AIC, BIC adds more penalty to the number of parameters. Models with

different number of states are fitted, and the one with the lowest AIC or BIC is usually

preferred.

5
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CHAPTER 3

Two Gaussian Hidden Markov Models

Two Gaussian hidden Markov models are proposed in this chapter. We show their definitions

and how they could be implemented step-by-step. After that, simulation studies are con-

ducted to investigate the effectiveness of the model-estimation technique. These two models

are employed in Chapter 5 to identify patterns in real-world data.

3.1 Univariate Gaussian HMMs with Covariate

3.1.1 Definition

Consider a hidden Markov model with discrete hidden states {Zt} and continuous observa-

tions {Yt}. The space for the hidden states is {1, 2, . . . , N}, and the space for the observations

is R. The state transition matrix and the initial state distribution are defined the same way

as in (2.1) and (2.2). Let γj = (θ0,j, θ1,j, σ
2
j ) denote the parameter set for the jth state’s

emission, and θ = (A, γ) represent all the parameters. We assume that the emission density

is Gaussian conditioning on the hidden state and the observable covariate Xt ∈ R,

Yt|Xt, Zt = j ∼ N(θ0,j + θ1,jXt, σ
2
j )

f (Yt|Xt; γj) =
(
2πσ2

j

)− 1
2 exp

{
−(Yt − θ0,j − θ1,jXt)

2

2σ2
j

}
.

The mean and variance of the distribution are allowed to vary across different states.

The model is illustrated in Figure 3.1. Note that while the hidden states influence the

observed symbols, it do not have any effects on the values taken by the covariates. In other

words, we assume {Xt} and {Zt} to be uncorrelated.

6
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Figure 3.1: Graphical representation of an univariate HMM with covariate

Let Ztj = I (Zt = j), by (2.3) the joint probability of the model can be calculated by

P (Y, Z|X; θ) = P(Z1)P (Y1|X1, Z1)
n∏
t=2

P (Zt|Zt−1)P (Yt|Xt, Zt)

∝
N∏
j=1

n∏
t=1

(f (Yt|Xt; γj))
Ztj ×

N∏
i=1

N∏
j=1

n∏
t=2

(aij)
Z(t−1)iZtj .

The complete data log-likelihood is

l (θ|Y, Z) = logP (Y, Z|X; θ)

=
N∑
j=1

n∑
t=1

Ztj log f (Yt|Xt; γj) +
N∑
i=1

N∑
j=1

n∑
t=2

Z(t−1)jZtj log aij + const

=
N∑
j=1

n∑
t=1

Ztj

(
−1

2
log σ2

j −
(Yt − θ0,j − θ1,jXt)

2

2σ2
j

)

+
N∑
i=1

N∑
j=1

n∑
t=2

Z(t−1)jZtj log aij + const.

For simplicity, the constant term is dropped in subsequent sections.

7



www.manaraa.com

3.1.2 Implementation

Learning Parameters

The E-step:

First write down the objective function

Q
(
θ
∣∣θ(m)

)
, E

[
l (θ|Y, Z)

∣∣Y,X; θ(m)
]

=
N∑
j=1

n∑
t=1

E
[
Ztj
∣∣Y,X; θ(m)

](
−1

2
log σ2

j −
(Yt − θ0,j − θ1,jXt)

2

2σ2
j

)

+
N∑
i=1

N∑
j=1

n∑
t=2

E
[
Z(t−1)iZtj

∣∣Y,X; θ(m)
]

log aij.

Let α
(m)
t (j) = P

(
Y1:t, Zt = j

∣∣X; θ(m)
)
, β

(m)
t (j) = P

(
Y(t+1):n

∣∣Zt = j,X; θ(m)
)
. Note that ∀j,

E
[
Ztj
∣∣Y,X; θ(m)

]
= P

(
Zt = j

∣∣Y,X; θ(m)
)
∝ P

(
Y, Zt = j

∣∣X; θ(m)
)

= α
(m)
t (j)β

(m)
t (j)

⇒ E
[
Ztj
∣∣Y,X; θ(m)

]
=

α
(m)
t (j)β

(m)
t (j)∑N

i=1 α
(m)
t (i)β

(m)
t (i)

, u
(m)
t (j).

Similarly, ∀i, j,

E
[
Z(t−1)iZtj

∣∣Y,X; θ(m)
]

= P
(
Zt−1 = i, Zt = j

∣∣Y,X; θ(m)
)

∝ P
(
Y, Zt−1 = i, Zt = j

∣∣X; θ(m)
)

= a
(m)
ij f

(
Yt

∣∣∣Xt; γ
(m)
j

)
α
(m)
t−1(j)β

(m)
t (j)

⇒ E
[
Z(t−1)iZtj

∣∣Y,X; θ(m)
]

=
a
(m)
ij f

(
Yt

∣∣∣Xt; γ
(m)
j

)
α
(m)
t−1(j)β

(m)
t (j)∑N

k=1

∑N
l=1 a

(m)
kl f

(
Yt

∣∣∣Xt; γ
(m)
l

)
α
(m)
t−1(m)β

(m)
t (l)

, w
(m)
t (i, j).

To calculate α’s and β’s, we make use of their recursion relationships. Forward summation

is used to compute α
(m)
t (j):

1. Initialization: α
(m)
1 (i) = πif

(
Y1

∣∣∣X1; γ
(m)
i

)
, i = 1, 2, . . . , N.

2. Recursion: For t = 1, 2, . . . , n− 1,

α
(m)
t+1(j) = f

(
Yt+1

∣∣∣Xt+1; γ
(m)
j

)∑N
i=1 a

(m)
ij α

(m)
t (i), j = 1, 2, . . . , N.

8
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Backward summation is used to compute β
(m)
t (i):

1. Initialization: β
(m)
n (i) = 1, i = 1, 2, . . . , N.

2. Recursion: For t = n− 1, n− 2, . . . , 1,

β
(m)
t (i) =

∑N
j=1 a

(m)
ij f

(
Yt+1

∣∣∣Xt+ 1; γ
(m)
j

)
β
(m)
t+1(j), j = 1, 2, . . . , N.

The M-step:

Already know how to calculate the conditional expectations of Ztj and Z(t−1)jZtj, we plug

them back into the objective function. Maximizing the objective function w.r.t. aij, θ0,j, θ1,j

and σ2
j (see Appendix A.1), we get:

a
(m+1)
ij =

∑n
t=2w

(m)
t (i, j)∑N

k=1

∑n
t=2w

(m)
t (i, k)

θ
(m+1)
1,j =

∑n
t=1 u

(m)
t (j)XtYt − njXjY j∑n

t=1 u
(m)
t (j)X2

t − nj
(
Xj

)2
θ
(m+1)
0,j = Y j − θ(m+1)

1,j Xj

(
σ2
j

)(m+1)
=

∑n
t=1 u

(m)
t (j)

(
Yt − θ(m+1)

0,j − θ(m+1)
1,j Xt

)2
nj

.

Here nj =
∑n

t=1 u
(m)
t (j), Xj =

∑n
t=1 u

(m)
t (j)Xt

nj
, Y j =

∑n
t=1 u

(m)
t (j)Yt
nj

.

Decoding Hidden States

1. Initialization: δ1(i) = πif (Y1|X1; γ̂i) , i = 1, 2, . . . , N.

2. Forward maximization: For t = 1, 2, . . . , n− 1, j = 1, 2, . . . , N

δt+1(j) = max1≤i≤N {δt(i)âij} f (Yt+1|Xt+1, γ̂j)

ηt+1(j) = arg max1≤i≤N {δt(i)âij} .

3. Backward tracking: Let Ẑn = arg maxi δn(i); for t = n−1, n−2, . . . , 1, Ẑt = ηt+1(Ẑt+1).

Summary of the Algorithm

• Step 0: Initialize θ(0), set m = 0;

9
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• Step 1: Calculate αt(i)
(m) and βt(i)

(m);

• Step 2: Calculate ut(i)
(m) and wt(i, j)

(m);

• Step 3: Calculate a
(m+1)
ij , θ

(m+1)
1,j , θ

(m+1)
0,j and

(
σ2
j

)(m+1)
.

Add m by 1, repeat Steps 1 to 3 until convergence;

• Step 4: Calculate Ẑ.

3.1.3 Simulation Study

Data Generation

Suppose that there are N = 3 distinct states and we want n = 400 observations. The

first “hidden” state, Z1, is drawn from the initial state distribution π =
(
1
3
, 1
3
, 1
3

)
. It

is in fact visible to us in this study, so that we can later judge the performance of the

Viterbi algorithm by comparing the inferred states with the true values. Following the state

transition probabilities, all the hidden states are drawn one-by-one. After that, covariates are

randomly generated from N(0.01, 0.012). Given {Zt} , {Xt} and the γj’s, observed symbols

{Yt} are drawn from N
(
θ0,Zt + θ1,ZtXt, σ

2
Zt

)
.

Model Estimation

Models with N = 2, 3, 4 hidden states are fitted using the “depmixS4” package[VS10] in R.

According to its manual, it is believed that this package implements our proposed method

to do model-fitting. A simple linear model without hidden states is also fitted. From Figure

3.2, the model with 3 hidden states is selected over the other threes, which is in line with

the data-generating process.

As the parameters of our model are non-identifiable (you can feel free to re-label the

states), we try to match the fitted parameters to the true ones by switching the order. From

Table 3.1 one can see that the fitted transition probabilities are quite close to the true ones

except for â31 and â33. Table 3.2 shows the true emission density parameters and the fitted

10
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Figure 3.2: Information criteria of models fitted on the simulated data

ones. Standard deviations seem to be estimated really well, while the estimated slope θ̂1,3

differ a little bit too much from the true value.

True 1 2 3 Fitted 1 2 3

1 0.4 0.5 0.1 1 0.358 0.563 0.079

2 0.2 0.7 0.1 2 0.218 0.670 0.112

3 0.5 0.3 0.2 3 0.676 0.324 0.000

Table 3.1: True and fitted state transition matrices (3-state model)

True θ0 θ1 σ Fitted θ0 θ1 σ

1 0.03 1.20 0.010 1 0.032 1.106 0.010

2 -0.01 0.85 0.005 2 -0.012 0.921 0.005

3 0.01 1.50 0.050 3 0.006 1.776 0.043

Table 3.2: True and fitted emission density parameters (3-state model)

In terms of hidden states, the prediction error is 26/400 = 6.50%, a very exceptional

performance. The following plot also illustrates that the true and inferred states series are

highly similar to each other. Overall, the package works well to fit univariate Gaussian

HMMs with covariate.
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Figure 3.3: True and inferred hidden states of the simulated data

3.2 Bivariate Gaussian HMMs

3.2.1 Definition

Consider another hidden Markov model with discrete hidden states {Zt : Zt = 1, 2, . . . , N}

and continuous observations {Yt : Yt ∈ R2}. The state transition matrix and the initial state

distribution are defined the same way as in (2.1) and (2.2). Let γj = (µj,Σj) denote the

parameter set for the jth state’s emission, and θ = (A, γ) represent all the parameters, where

µj =

(
µ1,j

µ2,j

)
,Σj =

(
σ2
1,j σ12,j

σ12,j σ2
2,j

)
.

Suppose that the emission density is bivariate Gaussian conditioning on the hidden state,

we have

Yt|Zt = j ∼ N (µj,Σj)

f (Yt; γj) = (2π)−1|Σj|−
1
2 exp

{
−1

2
(Yt − µj)ᵀ Σ−1

j (Yt − µj)
}
.

The mean vector and covariance matrix of the distribution are allowed to vary across different

states. The model is illustrated in Figure 3.4.
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Figure 3.4: Graphical representation of an bivariate HMM

Let Ztj = I (Zt = j), by (2.3) the joint probability of the model can be calculated by

P (Y, Z; θ) ∝
N∏
j=1

n∏
t=1

(f (Yt; γj))
Ztj ×

N∏
i=1

N∏
j=1

n∏
t=2

(aij)
Z(t−1)iZtj .

The complete data log-likelihood is

l (θ|Y, Z) = logP (Y, Z; θ)

=
N∑
j=1

n∑
t=1

Ztj

(
−1

2
log |Σj| −

1

2
(Yt − µj)ᵀ Σ−1

j (Yt − µj)
)

+
N∑
i=1

N∑
j=1

n∑
t=2

Z(t−1)jZtj log aij + const.

For simplicity, the constant term is dropped in subsequent sections.

3.2.2 Implementation

Learning & Decoding

In the E-step, the quantities α
(m)
t (j), β

(m)
t (j), u

(m)
t (j), w

(m)
t (i, j) can be computed as in Section

3.1.2 by slightly modifying the emission density. In the M-step, after maximization (See

Appendix A.2) we get

a
(m+1)
ij =

∑n
t=2w

(m)
t (i, j)∑N

k=1

∑n
t=2w

(m)
t (i, k)

µ
(m+1)
j = Y j

Σ
(m+1)
j =

∑n
t=1 u

(m)
t (j) (Yt − µj) (Yt − µj)ᵀ

nj
.
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Where nj =
∑n

t=1 u
(m)
t (j), Y j =

∑n
t=1 u

(m)
t (j)Yt
nj

. Decoding of hidden states also follows the

procedures in Section 3.1.2.

Summary of the Algorithm

• Step 0: Initialize θ(0), set m = 0;

• Step 1: Calculate αt(i)
(m) and βt(i)

(m);

• Step 2: Calculate ut(i)
(m) and wt(i, j)

(m);

• Step 3: Calculate a
(m+1)
ij , µ

(m+1)
j and Σ

(m+1)
j .

Add m by 1, repeat Steps 1 to 3 until convergence;

• Step 4: Calculate Ẑ.

3.2.3 Simulation Study

Similar to the previous case, we first generate the hidden state sequence {Zt}. After

that, each Yt is drawn from the bivariate normal distribution N (µZt ,ΣZt). The R pack-

age “mhsmm”[OH11] is adopted to fit the simulated data assuming there are 2, 3 and 4

hidden states. A bivariate normal model with no hidden state is also fitted.

Figure 3.5 presents the information criteria of the fitted 4 models. Both AIC and BIC

are in favor of the 2-state model, which agrees with the true data-generating process. The

closeness between true and fitted transition probabilities are demonstrated in Table 3.3. In

Table 3.4, we can see that the fitted parameter also do not differ much from the true values,

except for the estimate of µ1 and σ12 in state 2.

True 1 2 Fitted 1 2

1 0.800 0.200 1 0.802 0.198

2 0.300 0.700 2 0.203 0.797

Table 3.3: True and fitted state transition matrices (2-state model)
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Figure 3.5: Information criteria of models fitted on the simulated data

True µ1 µ2 σ21 σ22 σ12

1 -3.000 0.000 1.000 1.000 0.000

2 1.000 2.000 4.000 3.000 2.000

Fitted µ1 µ2 σ21 σ22 σ12

1 -2.979 0.005 1.068 0.854 -0.085

2 0.562 1.840 5.203 3.163 2.709

Table 3.4: True and fitted emission density parameters (2-state model)

The prediction error for hidden states is as low as 32/400 = 8.00%, as is depicted in

Figure 3.6. In general, the package seems to have a satisfactory performance in fitting

bivariate HMMs.

Figure 3.6: True and inferred hidden states of the simulated data
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CHAPTER 4

Stock Returns

This chapter provides some background knowledge about stock returns. Concepts and no-

tations defined in this chapter are extensively used in the next chapter.

4.1 Basic Definitions

4.1.1 Returns

Let {St} denote a discrete-time stochastic process of asset price. Each St stands for the asset

price at time t. The simple return (arithmetic return) of the asset over the period [t− 1, t]

is defined by

rsimplet =
St − St−1

St−1

.

The unit time period could be a day, a week, etc. In real-world applications, the gaps in

trading days are often ignored. On each trading day, the stock exchange quotes 5 prices for

each stock listed: open, high, low, closing and adjusted closing. An adjusted closing price

is calculated by removing the effects of stock splits and dividends from the closing price,

and thus is a better measure of capital gains. Without special mentioning, ‘price’ refers to

adjusted closing price in this thesis.

Note that the range of simple return is asymmetric: it can never fall below -1. For

this reason, another definition of return is preferred when doing analyses. The continuously

compounded return (log return) over the period [t− 1, t] is

rcct = log

(
St
St−1

)
= logSt − logSt−1. (4.1)

For simplicity of notation, by default rt is equivalent to rcct throughout the thesis.
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To convert simple returns to log returns, notice the following relationship:

St−1(1 + rsimplet ) = St = St−1e
rt

1 + rsimplet = ert

⇒ rt = log
(

1 + rsimplet

)
.

(4.2)

Consider a portfolio made up of all risky assets in the market, held in proportion to their

value. This is the so-called market portfolio. It is not tractable, and a market index is good

enough to serve as a proxy. Let Mt denote the value of the market index at time t, the log

return on the market index (market return) over the period [t− 1, t] is

rm,t = log

(
Mt

Mt−1

)
= logMt − logMt−1. (4.3)

Let rf,t denote the log return on a risk-free asset (risk-free return) over the period [t− 1, t].

As there is no absolutely zero risk assets in the world, the interest rate on a three-month

U.S. Treasury Bill is usually used as a proxy.

4.1.2 Excess Returns

Excess return is the difference between asset return and risk-free return. Its expectation

form is known as risk premium, since investors are only compensated for taking extra risks

compared to holding a risk-free investment. The asset excess return and market excess return

are defined as

Rt = rt − rf,t, Rm,t = rm,t − rf,t. (4.4)

And the corresponding risk premiums are

E (Rt) = E (rt)− rf,t,E (Rm,t) = E (rm,t)− rf,t.

4.2 Volatility of Returns

Volatility refers to the standard deviation of asset log returns, i.e.

Volatility (rt) =
√
V ar (rt).

17



www.manaraa.com

Previous studies [Con01] has revealed that the return series of stock exhibit volatility clus-

tering, when periods of high volatility are followed by high volatility and periods of lower

volatility are followed by low volatility. In Chapter 5, readers are going to see how this

stylized fact is captured by the hidden Markov models.

4.3 Normality of Stock Returns

Consider the following asset dynamics (Geometric Brownian Motion) for stock price used by

Black and Scholes in their options pricing model [BS73]:

dSt = µStdt+ τStdWt

where µ represents drift, τ represents volatility, Wt is a Wiener process (standard Brownian

motion) that satisfies Wt ∼ N(0, t). Using Ito’s lemma we have

d logSt =

(
µ− 1

2
τ 2
)
dt+ τdWt.

In discrete time,

rt = logSt − logSt−1 =

(
µ− 1

2
τ 2
)

+ τ(Wt −Wt−1).

As Wt −Wt−1 ∼ N (0, t− (t− 1)) = N(0, 1),

rt ∼ N

((
µ− 1

2
τ 2
)
, τ 2
)
.

So the log return of the stock is approximately normal. This argument can be extended to

market return as well. In terms of the risk-free return, theoretically it should not exhibit

any volatility. Empirically, the proxy for risk-free rate does fluctuate as time goes, but the

variance is negligible. For this reason, we could also regard the stock excess return and

market excess return to be normal.

18



www.manaraa.com

CHAPTER 5

Inspection of the Capital Asset Pricing Model

The Capital Asset Pricing Model (CAPM) is widely accepted and used in the financial

industry to compute benchmark returns for securities and portfolios. Developed by William

Sharpe [Sha64] and John Lintner [Lin69], it connects the risk premium of an asset to the

market risk premium by a linear relationship. This relationship seems to vary with different

underlying non-observable states. In the field of econometrics, a state is often referred to as

an regime. We use state and regime interchangeably.

This chapter starts with an outline of CAPM, followed by the definitions of regimes

from three perspectives and the methodologies to investigate the CAPM relationship under

various regimes. Finally, the proposed procedures are applied into the analysis of real-world

financial time series. Results are shown with interpretations.

5.1 The Capital Asset Pricing Model (CAPM)

According to the Capital Asset Pricing Model (CAPM), in an efficient market there exists a

linear relationship between the expectation of a stock’s excess return (called the stock’s risk

premium) and the market risk premium:

E (Rt) = β E (Rm,t) .

This is also known as the return-beta relationship. Now consider a regression model with a

Gaussian noise that is independent to the predictor:

Rt = α + βRm,t + εt, εt ∼ N(0, σ2). (5.1)
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Here β describes the sensitivity of the stock excess returns to the market excess returns. It

is also a measure of the systematic risk. α usually plays a role in stock selection: a positive

α means the stock is underpriced, while a negative α means it is overpriced. If CAPM holds

(which is too good to be true in reality), after taking expectation on both sides one can see

that α = 0. Readers may have noticed that the α and β symbols used here carry meanings

different from those in Chapter 3.

Take another look at (5.1), taking covariance with Rm,t on both sides, we have

Cov(Rt, Rm,t) = βV ar(Rm,t)⇒ β =
Cov(Rt, Rm,t)

V ar(Rm,t)
(5.2)

Traditional CAPM assumes that betas are fixed in time, or at most slowly evolving as

the company grows. However, some findings in the literature argue that the beta coefficients

may be time-varying [GF99][Rey99][AF09]. If it is really the case, fund managers and option

traders need to frequently adjust their model inputs to avoid receiving distorted predictions

and losing money. In the coming sections we are going to focus on β only, α is not our

concern.

5.2 Regimes from Three Perspectives

Before examining the return-beta relationship under different regimes, it is necessary to

clarify how we define regimes and what dynamics they are supposed to capture. Three kinds

of regimes are considered: market, idiosyncratic and co-regimes. While market regimes are

frequently mentioned by economists, the latter two are named by us. We also elaborate on

how to identify regimes with the data, which is made up of observed excess return pairs

(Rt, Rm,t).

5.2.1 Market Regimes

Market regimes are the underlying states of the stock market, to be more specific, the

market index return or market index excess return. Previous studies have found evidence of

regimes in market returns, usually a high-mean, low variance regime and a low-mean high
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variance regime[HL96][SN97]. [TSN89] has suggested negative correlation in movements

between volatility and market excess returns. Market regimes capture market-wide news

and events. Possible driving force of regime-switching are fluctuations in macroeconomic

factors, for instance, exchange rate[WCM11], inflation rate[Che09] and level of industrial

productions[HL96] .

To identify market regimes, consider a univariate Gaussian HMM on the excess return

of market index. This is a simplified version of both models proposed in Chapter 3. We

assume that

Rm,t|Zm,t = j ∼ N(µm,j, σ
2
m,j),

where Zm,t represents the market regime. As one can see, the mean and the volatility are

allowed to differ from one regime to another.

After regimes are discovered by the Viterbi algorithm, we cut our data pairs into blocks

accordingly. Linear regressions of Rt on Rm,t are then implemented for blocks characterized

by the same regime.

5.2.2 Idiosyncratic Regimes

The return of each stock has two sources of variation: the market factor and the firm-specific

factor. Suppose that news comes out, say, that the CEO of the company is detained by law

enforcement authorities due to embezzlements. This would hardly affect the overall market

returns, but it would definitely lower investors’ confidence in the future earnings of the firm,

and thus reduces the stock price. In this scenario, the sensitivity of stock excess returns to

the market excess returns (beta) may also alter.

To identify idiosyncratic regimes, consider a univariate Gaussian HMM with covariate.

We assume that

Rt|Rm,t, Zt = j ∼ N(αj + βjRm,t, σ
2
j ),

where Zt stands for the idiosyncratic regime. This conditional distribution could easily

follow from (5.1). Recall from Section 3.1.1 that the model requires the hidden states and

the covariates to be uncorrelated. This needs to be examined before fitting the model.
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5.2.3 Co-Regimes

Co-regimes captures the phenomena in stock excess returns and market excess returns that

tend to emerge simultaneously. A typical example is co-movement in returns or volatilities.

To identify co-regimes, consider a bivariate Gaussian HMM . We assume that(
Rt

Rm,t

)
|Zco,t = j ∼ N

(
µj,Σj =

(
V ar(Rt)j Cov(Rt, Rm,t)j

Cov(Rt, Rm,t)j V ar(Rm,t)j

))
.

Here Zco,t represents the co-regime. After model-fitting, betas can be easily deduced from

the covariance matrix by (5.2).

5.3 Data Description & Preparation

Five stocks from various industries in the U.S. stock market are chosen for our study. They

are McDonald’s (MCD, food), Nike (NKE, apparel), Twitter (TWTR, information technol-

ogy), Verizon (VZ, telecommunication) and Walgreens Boots Alliance (WBA, retail phar-

macy). The market index S&P500 serves as the proxy for market portfolio.

Daily data is not used for analysis as it tends to contain too many noises, which may

distort the underlying pattern. The weekly adjusted closing prices from Jan 6, 2014 to

Oct 22, 2018 are downloaded from Yahoo Finance, from which log returns are calculated

according to (4.1) and (4.3). Risk-free simple returns are retrieved from Dr. Kenneth R.

French’s research website1. After that, risk-free log returns are computed by (4.2). Finally,

subtract risk-free returns from stock/market index log returns to get excess returns, as in

(4.4). We have 250 excess return observations for each stock and the market index.

5.4 CAPM under Different Market Regimes

The univariate Gaussian HMM in Section 5.2.1 is fitted with 2, 3, 4 hidden states. A simple

linear regression without regressors is also fitted to serve as the case with no hidden states.

1See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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The information criteria of these models are compared. As one can see from the figure below,

the AIC plot prefers the 3-state model (yet the AICs of the 2-state and the 3-state models

are quite close, taking values of -1372.779 and -1378.294 respectively), while the BIC plot

suggests the use of 2 states. Thus, the 2-state model is selected.

Figure 5.1: Information criteria of models fitted on S&P500 excess return

From Table 5.1 we can recognize a state with negative mean and high volatility, and a

state with positive mean and low volatility. The first state can be interpreted as “bearish”

market regime, while the second state stands for “bullish” market regime. This parallels with

the existing studies [HL96][SN97][TSN89]. Both states are strongly persistent, as indicated

by p11 and p22. The duration for each state is 1/0.1 = 10 weeks and 1/0.072 = 13.89 weeks

respectively. Also note that the model is able to capture the volatility clustering effect in

the time series (see Figure 5.2).

µm,1 µm,2 σm,1 σm,2 p11 p12 p21 p22

-0.001 0.003 0.023 0.009 0.900 0.100 0.072 0.928

Table 5.1: Fitted parameters of the 2-state model on S&P500 excess return

Now inspect the CAPM relationship and the distribution of stock excess returns under

each market regime (Table 5.2). Except for NKE, the betas under the bearish regime are

lower or at least no bigger than the betas under the bullish regime. This asymmetry indicates

that stocks are more sensitive to market growth than shrinkage. Market regimes do not seem

to have a distinguishable effect on stock excess returns in terms of mean and variance, though.
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Figure 5.2: Weekly S&P500 excess returns with market regime marked

It is counterintuitive to notice that the excess returns are slightly lower for MCD and WBA

under bullish regime when compared with bearish regime.

Stock β1 β2 µ1 µ2 σ1 σ1

MCD 0.567 0.592 0.004 0.002 0.026 0.019

NKE 0.858 0.813 0.002 0.003 0.033 0.027

TWTR 0.904 1.751 -0.005 0.001 0.072 0.073

VZ 0.666 0.660 0.001 0.001 0.026 0.023

WBA 0.734 1.189 0.003 0.000 0.031 0.031

Table 5.2: Betas and distribution statistics under different market regimes

5.5 CAPM under Different Idiosyncratic Regimes

To examine the underlying assumption, 2,3 and 4-state univariate Gaussian HMMs (no

covariates) are fitted on stock excess returns. Their AIC and BIC plots are supportive of

the 2-state model (omitted in this thesis). Then, we calculate the correlation between the

inferred hidden states of this model and the hidden states of the market calculated in the

previous section. Results are displayed in the table below, suggesting negligible or week

correlation.
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MCD NKE TWTR VZ WBA

0.120 -0.081 -0.003 0.053 -0.010

Table 5.3: Correlation between market hidden states and stock hidden states

After the preliminary step, for each pair the univariate Gaussian HMM with covariate in

Section 5.2.2 is fitted with 2, 3, 4 hidden states. A simple linear regression on market excess

returns is also fitted to serve as the case with no hidden states. Almost all the plots in

Figure 5.3 are in favor of the 2-state model. Hence it is chosen. Figure 5.4 has demonstrated

the power of idiosyncratic regimes to mark volatility clustering in individual stock excess

returns.

Just like market excess return, which experiences high volatility and low means at the

same time, stock excess returns show similar patterns in 5.4. The first state can be interpreted

as “individually bearish” regime, and the second can be considered as “individually bullish”

regime. The reason that NKE’s β1 is negative could be attributed to the fact that its mean

is higher in state 1, an exception to our identified pattern. For other stocks, there is no

consistent patterns in beta, yet their betas do vary under different regimes.

Figure 5.5 indicates that a stock’s duration in the individually bullish state is longer

compared with that in the individually bearish one.

Stock β1 β2 µ1 µ2 σ1 σ2 µm,1 µm,2 σm,1 σm,2

MCD 0.776 0.409 0.000 0.004 0.041 0.014 0.000 0.002 0.021 0.015

NKE -2.01 0.936 0.065 0.001 0.056 0.027 -0.007 0.002 0.011 0.017

TWTR 0.218 1.558 -0.016 0.002 0.131 0.043 0.000 0.002 0.017 0.017

VZ 0.668 0.653 0.002 0.001 0.038 0.017 -0.001 0.002 0.017 0.016

WBA 0.126 0.938 -0.006 0.002 0.073 0.027 -0.004 0.002 0.019 0.017

Table 5.4: Betas and distribution statistics under different idiosyncratic regimes
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Stock p11 p12 p21 p22 Dur1 Dur2

MCD 0.697 0.303 0.149 0.851 3.30 6.71

NKE 0.118 0.882 0.059 0.941 1.134 16.95

TWTR 0.346 0.654 0.365 0.635 1.53 2.74

VZ 0.693 0.307 0.229 0.771 3.26 4.37

WBA 0.465 0.535 0.105 0.895 1.87 9.52

Table 5.5: Transition probabilities between different idiosyncratic regimes

5.6 CAPM under Different Co-Regimes

For each pair, the bivariate Gaussian HMM is fitted with 2, 3, 4 hidden states. Bivariate

normals without hidden states are also fitted. Again we compare the information criteria of

these models. In Figure 5.5, while AICs do not seem to give a consistent suggestion, for all

pairs BICs are lowest when the number of states is 2. Thus, for the sake of parsimony we

choose the 2-state model.

Stock β1 β2 µ1 µ2 σ1 σ2 µm,1 µm,2 σm,1 σm,2

MCD 0.670 0.377 -0.002 0.004 0.041 0.015 -0.008 0.003 0.029 0.011

NKE 0.944 0.158 -0.002 0.007 0.030 0.028 0.000 0.003 0.022 0.008

TWTR 0.663 1.374 -0.033 0.005 0.135 0.046 -0.013 0.005 0.025 0.012

VZ 0.688 0.597 0.002 0.001 0.025 0.024 0.000 0.003 0.023 0.008

WBA 0.483 0.909 -0.030 0.004 0.062 0.026 -0.027 0.004 0.026 0.013

Table 5.6: Betas and distribution statistics under different co-regimes

Stock p11 p12 p21 p22 Dur1 Dur2

MCD 0.582 0.418 0.159 0.841 2.40 6.29

NKE 0.881 0.119 0.115 0.885 8.40 8.70

TWTR 0.248 0.752 0.286 0.714 1.33 3.50

VZ 0.897 0.103 0.088 0.912 9.71 11.36

WBA 0.286 0.714 0.131 0.869 1.40 7.63

Table 5.7: Transition probabilities between different co-regimes

Now take a look at Table 5.6 and 5.7. The means for stock excess returns and market

excess returns are non-positive in state 1 except for VZ, while the means are positive in state
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2. Speaking of volatilities, those in state 1 are considerably higher than those in state 2.

This motivates us to regard the first state as “co-bearish” and the second one as “co-bullish”.

For each pair, co-regimes is able to account for volatility clustering in the market, but works

poorly for the phenomenon in excess returns of certain stocks (NKE & VZ), as it is shown

in Figure 5.6.

A similar study by Fridman[Fri94] on three oil stocks argues that when the volatility is

high, the betas are consistently larger while the self-transition probability p11’s are lower. In

our case, however, betas do not seem to have a consistent pattern across the two co-regimes.

A stock and the market could move in the same direction, but the sensitivity might be

determined by both market and firm-specific factors. However, we can at least argue that

for each stock the sensitivity is different under the two co-regimes. Fridman’s conclusion

about persistency does hold in our case, implying that stocks and market tend to stay longer

period in co-bullish regime.

For investors, an ideal investment is those with long duration in co-bullish and short

duration in co-bearish. A natural choice is MCD and WBA. VZ do have remarkably long

duration in the co-bullish state, but its equally length stay in the co-bearish state could be

a nightmare for investors, resulting in continuous losses.
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Figure 5.3: Information criteria of fitted univariate HMMs with covariate on each pair
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Figure 5.4: Weekly excess returns for each stock with idiosyncratic regime marked
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Figure 5.5: Information criteria of fitted bivariate HMMs on each pair
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Figure 5.6: Weekly excess returns for each pair with co-regimes marked
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CHAPTER 6

Discussion

In this thesis we have proposed two Gaussian hidden Markov models: univariate HMMs

with covariate and bivariate HMMs. The methods of parameter estimation, hidden states

decoding are also demonstrated, followed by simulation studies to show that the procedures

are effective.

Proposed models are then employed to investigate the return-beta relationship of the

capital asset pricing model under 3 types of regimes. Results show that betas are larger

under bullish market regime compared to bearish. Although no consistent patterns in beta

are discovered under different idiosyncratic regimes and co-regimes, for each stock the betas

do seem to vary considerably across regimes. The duration in each regime as well as the

captured volatility clustering effect shed light on investor’s strategies.

For future work, we may consider examine the relationship between the inferred market,

idiosyncratic and co-regimes. Instead of picking stocks from different industries, using sector

data may provide more insights in the patterns of beta. Our model can also be extended to

the well -established Fama French three factor model to see how the loadings of the factors

vary across states. Normality assumption of returns can be lifted to take skewness and fat

tails into consideration.
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APPENDIX A

Appendix

A.1 Univariate Gaussian HMMs with Covariate: The M-step

We start from the objective function

Q
(
θ
∣∣θ(m)

)
=

N∑
j=1

n∑
t=1

u
(m)
t (j)

(
−1

2
log σ2

j −
(Yt − θ0,j − θ1,jXt)

2

2σ2
j

)

+
N∑
i=1

N∑
j=1

n∑
t=2

w
(m)
t (i, j) log aij.

Easy to see that the first term contains γ only, while the second term contains aij’s only. To

estimate γj =
(
θ0,j, θ1,j, σ

2
j

)
, differentiate the first term w.r.t. θ0,j and θ1,j and set it zero,
− 1

2σ2
j

∑n
t=1 u

(m)
t (j)× (−2Xt)(Yt − θ0,j − θ1,jXt) = 0

− 1
2σ2

j

∑n
t=1 u

(m)
t (j)× (−2)(Yt − θ0,j − θ1,jXt) = 0

⇒


∑n

t=1 u
(m)
t (j)XtYt − θ0,j

∑n
t=1 u

(m)
t (j)Xt − θ1,j

∑n
t=1 u

(m)
t (j)X2

t = 0∑n
t=1 u

(m)
t (j)Yt − θ0,j

∑n
t=1 u

(m)
t (j)− θ1,j

∑n
t=1 u

(m)
t (j)Xt = 0.

Let nj =
∑n

t=1 u
(m)
t (j), Xj =

∑n
t=1 u

(m)
t (j)Xt

nj
, Y j =

∑n
t=1 u

(m)
t (j)Yt
nj

, then
∑n

t=1 u
(m)
t (j)XtYt − θ0,jnjXj − θ1,j

∑n
t=1 u

(m)
t (j)X2

t = 0

njY j − θ0,jnj − θ1,jnjXj = 0.

Multiply the second equation by Xj and subtract it from the first equation, and divide the

second equation by nj,
∑n

t=1 u
(m)
t (j)XtYt − n(m)

j XjY j − θ1,j
(∑n

t=1 u
(m)
t (j)X2

t − nj
(
Xj

)2)
= 0

Y j − θ0,j − θ1,jXj = 0
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⇒


θ
(m+1)
1,j =

∑n
t=1 u

(m)
t (j)XtYt−njXjY j∑n

t=1 u
(m)
t (j)X2

t −nj(Xj)
2

θ
(m+1)
0,j = Y j − θ(m+1)

1,j Xj.

For the variance, take derivative w.r.t. σ2
j ,

n∑
t=1

u
(m)
t (j)

(
− 1

2σ2
j

+
(Yt − θ0,j − θ1,jXt)

2

2σ4
j

)
= 0

n∑
t=1

u
(m)
t (j) (Yt − θ0,j − θ1,jXt)

2 − σ2
jnj = 0

⇒
(
σ2
j

)(m+1)
=

∑n
t=1 u

(m)
t (j)

(
Yt − θ(m+1)

0,j − θ(m+1)
1,j Xt

)2
nj

.

For a given i, to estimate aij∀j is equivalent to maximizing
∑N

j=1

∑n
t=2w

(m)
t (i, j) log aij

subject to the constraint
∑N

j=1 aij = 1. Since this is an analogy of the log-likelihood of a

multinomial distribution with cell probabilities (ai1, . . . , aiN) and cell counts(∑n
t=2w

(m)
t (i, 1), . . . ,

∑n
t=2w

(m)
t (i, N)

)
, we have

a
(m+1)
ij =

∑n
t=2w

(m)
t (i, j)∑N

k=1

∑n
t=2w

(m)
t (i, k)

.

A.2 Bivariate Gaussian HMMs: The M-step

We start from the objective function

Q
(
θ
∣∣θ(m)

)
=

N∑
j=1

n∑
t=1

u
(m)
t (j)

(
−1

2
log |Σj| −

1

2
(Yt − µj)ᵀ Σ−1

j (Yt − µj)
)

+
N∑
i=1

N∑
j=1

n∑
t=2

w
(m)
t (i, j) log aij.

Easy to see that the first term contains γ only, while the second term contains aij’s only.

Differentiate the first term w.r.t. µj and set it zero,

n∑
t=1

u
(m)
t (j)

(
−1

2

(
−2Σ−1

j Yt + 2Σ−1
j µj

))
= 0

⇒ Σ−1
j

n∑
t=1

u
(m)
t (j)Yt − Σ−1

j µj

n∑
t=1

u
(m)
t (j) = 0.
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Let nj =
∑n

t=1 u
(m)
t (j), Y j =

∑n
t=1 u

(m)
t (j)Yt
nj

, and multiply the equation by Σj,

n∑
t=1

u
(m)
t (j)Yt − njµj = 0⇒ µ

(m+1)
j = Y j.

To estimate the covariance matrix, rewrite the objective function,

Q
(
θ
∣∣θ(m)

)
=

N∑
j=1

n∑
t=1

u
(m)
t (j)

(
1

2
log |Σ−1

j | −
1

2
tr
[
Σ−1
j (Yt − µj) (Yt − µj)ᵀ

])

+
N∑
i=1

N∑
j=1

n∑
t=2

w
(m)
t (i, j) log aij.

Differentiate w.r.t. Σ−1
j ,

n∑
t=1

u
(m)
t (j)

(
1

2
Σᵀ
j −

1

2
(Yt − µj) (Yt − µj)ᵀ

)
= 0

njΣj −
n∑
t=1

u
(m)
t (j) (Yt − µj) (Yt − µj)ᵀ = 0

⇒ Σ
(m+1)
j =

∑n
t=1 u

(m)
t (j) (Yt − µj) (Yt − µj)ᵀ

nj
.

For the estimation of aij’s, see Appendix A.1.
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